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MAD (Mapping to Activity class-specific Descriptor value ranges) is a novel molecular similarity method
that relies on the identification of activity-specific descriptors. Applying a categorical descriptor scoring
function, value ranges of molecular descriptors in screening databases are compared with those in classes
of active compounds and descriptors displaying significant deviations are selected. In order to identify new
actives, database molecules are mapped to class-specific value ranges and ranked using a similarity function.
As a mapping algorithm, MAD is distinct from many other molecular similarity and virtual screening methods.
In systematic virtual screening trials, for small selection sets of only 30 database compounds, average hit
and recovery rates over six activity classes ranged from about 10% to 25% and about 25% to 75%,
respectively. Moreover, when mining a database of bioactive molecules many similar compounds were
selected (with hit rates between about 15% and 79%). Our findings suggest that it is possible to generate
compound class-directed descriptor reference spaces for molecular similarity analysis.

1. Introduction

Computational approaches used to assess molecular similarity,
evaluate structure-activity relationships, and predict active
compounds generally rely on combinations of molecular de-
scriptors1 for the design of appropriate chemical reference
spaces.2 In the context of QSAR,3 molecular similarity analysis,4

or ligand-based virtual screening,5 there is a long-standing
interest in the identification of molecular descriptors that
selectively respond to specific compound activities.6 The
availability of “selective” descriptors provides an important basis
for distinguishing between active and inactive molecules and
for the identification of novel hits and leads, using methods
such as clustering,7 partitioning,8 or similarity searching.9

Several approaches operate on the basis of compound class-
directed descriptor selection. For example, recursive partition-
ing10 makes it possible to trace descriptor pathways that enrich
active compounds in terminal nodes, and partitioning based on
principal component analysis11 permits the detection of descrip-
tors that contribute the most to desired classification results.11

In addition, techniques such as nonlinear mapping12 or multi-
dimensional scaling13 have been applied to focus on most
important descriptor contributions for diversity analysis or
library design. For similar purposes, self-organizing maps14 have
been integrated into QSAR analysis for descriptor selection.
Furthermore, the BCUT metric15 in conjunction with the concept
of receptor-relevant subspaces16 can be used to concentrate
compounds around certain descriptor axes in orthogonal chemi-
cal reference spaces.

Although the above approaches allow prioritization and
selection of descriptor sets for specific purposes, little progress
has been made in identifying descriptors that have a strong
tendency to respond to unique features of active compounds.
This is in part due to the fact that compound classes often
respond very differently to alternative classification and virtual
screening methods.17 Only very few studies have attempted to
analyze descriptor value distributions on a large scale in order
to aid in descriptor selection. For example, we systematically

studied and compared the information content of molecular
descriptors in various databases by application of the Shannon
entropy (SE) concept.18 Through the introduction of differential
Shannon entropy (DSE),19 we were able to introduce a value
range dependence of information content calculations, leading
to the development of the SE-DSE metric20 for database
profiling. Application of this concept combining SE and DSE
calculations made it possible to classify descriptors and assign
them to various information content categories.19,20Furthermore,
it was possible to identify descriptors that responded differently
to systematic chemical differences between, for example, natural
and synthetic molecules.20 In principle, the SE-DSE metric
could also be applied to explore differences between active and
inactive molecules and find descriptors that are sensitive to
chemical characteristics of an activity class. However, what
makes it difficult to apply this approach to the analysis of
activity classes is the fact that sets of active compounds are
usually orders of magnitude smaller than screening databases.
If only 10 or 50 compounds are available as a reference set,
which is too small to be a statistical sample, SE-DSE
calculations are no longer a reliable measure of differences in
information content.

This situation has led us to explore the possibility of
identifying activity class-specific descriptor value ranges in a
more direct manner. The presence of “signature” value ranges
that distinguish a set of active compounds from other database
molecules is likely to provide a basis for the identification of
novel actives. We found that many descriptors indeed adopt
narrow value distributions for sets of active compounds that
differ from their value distribution in screening databases. On
the basis of these findings, we investigated whether it was
possible to develop a virtual screening method by mapping
molecules to multiple activity-specific descriptor value ranges
and identifying those that closely match these ranges. Here we
report the results of our studies designed to determine activity
class-specific descriptors and utilize them for virtual screening
calculations. These investigations have led to the development
of a new method termed “mapping to activity class-specific
descriptor value ranges” (MAD) to effectively screen large
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compound databases. When MAD was applied to six compound
activity classes, significant hit and recovery rates were achieved
in simulated virtual screening situations that compared very well
to those obtained with established reference methods. Moreover,
many compounds with biological activity similar to that of
template molecules could be identified with MAD when a
collection of active molecules and drugs was mined.

2. Methodology

2.1. Concept.As a first step, we investigated whether it was
possible to determine value ranges of molecular property
descriptors that systematically differed between sets of active
compounds and random database molecules. Then we explored
if they could also be used to identify other active compounds.
This was attempted by application of a mapping algorithm.
Given their calculated descriptor values, database compounds
falling into multiple activity-class specific value ranges were
assigned a high score and probability to be active. The MAD
approach introduced here is suitable for large-scale virtual
screening because compound databases can be efficiently
scanned to select molecules that closely map descriptor settings
of active template compounds.

2.2. Algorithm.
2.2.1. Descriptor Statistics.For the compound database used

as the source for screening, a descriptor statistic is generated
as follows: for each descriptor, we calculate the minimum value
in the database (dbMin), the maximum value (dbMax), and its
median, defined as the value that divides a population of values
into two equal halves (above and below the median). Further-
more, we calculate the 25%-quantile (q0.25), the 75%-quantile
(q0.75), and the standard deviation (stdDev) of the value
distribution of each descriptor. For compounds belonging to an
activity class, the minimum (classMin) and maximum (class-
Max) values of each descriptor are determined. Then, the
descriptor value range (exactRange) of the activity class is
defined as exactRange) [classMin, classMax], and the size of
the value range is sizeRange) classMax- classMin.

2.2.2. Descriptor Scoring.The scoring function is designed
to compare descriptor value ranges of activity classes and
database molecules. If a descriptor with a broad value distribu-
tion in the source database produces only a narrow value range
for a given class of active compounds, it might correspond to
feature(s) important for specific activity. For the database
distribution of each descriptor, we distinguish the central 50%
of the values (termed centralRange), from the highest 25% and
lowest 25% of values for each descriptor. This makes it possible
to avoid a biasing influence of extreme values on descriptor
scoring. Similar correction procedures are implemented for the
definition of exactRange by omitting a defined number of active
compounds with highest and lowest descriptor values. However,
for the activity classes tested here, introducing these corrections
did not measurably change the results, as reported below. Based
on the definition of these three value subranges, we can
distinguish between three different scoring categories for each
descriptor:

(a) The value range of an activity class falls within the
centralRange or overlaps with it: classMaxg q0.25or classMin
e q0.75. Then the descriptor score is calculated as

(b) The value range of an activity class completely falls below
the “low” 25%-quantile of the database: classMax< q0.25. Then

we calculate the descriptor score as follows:

The factor 2 is applied in order to account for the fact that the
value range of only 25% of the database molecules is used here,
whereas in (a) the value range of 50% of the molecules is used.
Thus, the score in (b) is adjusted relative to that in (a).

(c) The value range of an activity class completely falls above
the “high” 25%-quantile of the database: classMin> q0.75. Then
the score is calculated as

The same factor adjustment as in (b) applies. A modification is
introduced when sizeRange becomes zero, i.e., when all active
compounds have the same descriptor value. In this case, we
correct sizeRange by use of delta, defined as a fraction of the
standard deviation of the descriptor database distribution:

By use of delta, the magnitude of the correction is made
dependent on the individual standard deviation of each affected
descriptor in the compound database. Applying delta, we adjust
classMin and classMax as follows:

These modifications produce an extended value range
[classMin•new, classMax•new]:

The final division by 100 was empirically chosen in order to
ensure that descriptors with delta correction achieve one of the
top scores within the typically observed scoring range (see
below). This is justified because, for these descriptors, all active
template compounds adopt exactly the same value (likely to be
a class-specific setting).

2.2.3. Score Distribution and Descriptor Selection.Ap-
plying the above scoring scheme, only positive scores of 0 or
greater are obtained. Descriptors in category (a) produce a score
smaller than 1, if the database value range between the 25%-
and 75%-quantiles is smaller than the descriptor value range.
This generally means that more than 50% of the database
molecules match the value range of the descriptor and implies
that the descriptor does not display sensitivity to the activity
class. By contrast, a descriptor score greater than 1 is usually
obtained when less than half of the database molecules match
the value range of an activity class, and we thus consider a score
greater than 1 a minimum threshold for descriptor selection.
Descriptors belonging to categories (b) and (c) produce scores
greater than 2 reflecting the situation that only 25% or fewer
of the database compounds match the value range of an activity
class. Accordingly, these descriptors are selective with respect
to the value ranges of activity classes and highly preferred in
our studies. Although descriptor scores do not provide the
information of how many database compounds actually match
the value range of an activity class, they clearly reflect selectivity
tendencies given the quantile boundaries applied here.
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A typically observed score range for our set of 124 descriptors
(see below) would consist of approximately 50% of the
descriptors having a score smaller than 1, 30%-40% of the
descriptors having a score between 1 and 2, and 10%-20% a
score greater than 2. Thus, on average, about 10% of the
descriptors specifically responded to the compound classes
investigated here, but responsive descriptors significantly varied
across these classes. Also, the score distribution among the top
10%-20% of the descriptors displayed strong activity class-
dependence. For best descriptors (excluding those with highly
discrete settings), we typically observed scores of 5 or greater.

For descriptor selection, we have applied relatively liberal
criteria in our calculations. For the reasons discussed above,
we consider a score of 1 to be a minimum threshold value for
selection. For each activity class, we have selected top scoring
descriptors in descending order to a score of 1, but the maximum
number of allowed descriptors was set to 60 (nearly 50% of
the basis set). These selection criteria cannot be generalized but
proved to be very appropriate for our virtual screening trials.

2.2.4. Descriptor Value Ranges for Compound Mapping.
Activity class-selective value ranges of descriptors provide the
basis for mapping of database molecules to multiple ranges and
compound selection. In order to further increase the ability to
recognize compounds with similar activity but diverse structures,
we investigated the possibility to moderately expand the exact
descriptor value range (i.e., exactRange) of each descriptor,
thereby effectively increasing the likelihood for database
compounds to match it. In preliminary calculations, we observed
a tendency to retrieve more active compounds when expanding
exactRange. Therefore, exactRange was extended by adding an
averaged form of variance:

“Baits” refers here to the set of active compounds used to
determine exactRange and as templates for virtual screening
trials. For compound mapping, the effective value range was
set to

For dExp, it is important to note that range expansion becomes
smaller with increasing numbers of active template molecules.
Increasingly large bait sets are expected to produce larger value
ranges due to a higher probability of intraset property variations,
whereas smaller bait sets are thought to benefit more from
expansion, especially for the purpose of compound recovery.

2.2.5. Mapping and Scoring of Database Compounds.
Mapping of database compounds to multiple activity class-
selective descriptor value ranges requires a similarity metric to
quantify the overlap between value ranges of bait and database
compounds. Potential hits would be expected to closely match
multiple descriptor settings of the bait set. In this context,M is
the number of descriptors where the value calculated for a
database compound falls within the value range of an activity
class andD is the total number of descriptors selected for this
activity class. Thus, for every database molecule, a similarity
score s is calculated by dividing the number of matching
descriptors by the total number of selected descriptors:

Accordingly, similarity scores between 0 and 1 can be obtained.

2.3. Calculations.
2.3.1. Activity Classes, Descriptors, and Database Com-

pounds. Two source databases were used for our studies, a
compound collection containing∼1.34 million molecules that
were collected from various medicinal chemistry vendors,21

termed background database (BGDB), and the Molecular Drug
Data Report (MDDR),22 containing approximately 160 000
entries. In our analysis, all BGDB molecules were considered
inactive (and thus potential false positives), although it is
conceivable that BGDB contains novel hits for the activity
classes studied here. By contrast, every MDDR molecule is
annotated with a certain activity. As descriptors, a previously
published basis set of 124 1D, 2D, and implicit 3D descriptors
was used in our calculations.21 These descriptors represent a
subset of those implemented in the Molecular Operating
Environment (MOE),23 and their values for activity classes and
database compounds were calculated with MOE. The MAD
approach was tested on six different activity classes that were
originally assembled from the literature for partitioning analy-
ses.24,25These classes consisted of 22 benzodiazepines (BEN),
17 cyclooxygenase-2 inhibitors (COX), 22 carbonic anhydrase
II inhibitors (CAE), 21 serotonin receptor ligands (5HT), 21
H3 antagonists (H3E), and 20 tyrosine kinase inhibitors (TKE).25

2.3.2. Virtual Screening Trials and Performance Mea-
sures.For each of the activity classes, 100 sets of 10 compounds
each were randomly selected for the determination of specific
value ranges and as baits for virtual screening. The remaining
compounds were added to BGDB as potential hits. Thus, for
each activity class, 100 different search calculations were carried
out, thereby limiting bias due to chance effects in the selection
of baits and potential hits. In BGDB virtual screening trials,
expandedRange was applied for compound mapping and selec-
tion. As performance measures, both hit rates (number of active
compounds relative to selected database molecules) and recovery
rates (number of selected active compounds relative to the total
number of potential database hits) were calculated. The numbers
of hits and false positives were determined in compound
selection sets of increasing size and averaged over 100 trials
for each activity class, permitting the final calculation of average
hit and recovery rates for each complete experiment. Further
analysis was carried out using MDDR as source database.
However, in this case, all active compounds were used as baits
and value range expansion was not applied to these larger
compound sets. For each activity class, a single run was carried
out and the distribution of activities among the top scoring
MDDR compounds was analyzed.

2.3.3. Reference Calculations.In order to compare the MAD
results obtained in our virtual screening calculations with other
methods, we carried out 2D similarity search calculations on
the six activity classes using a fingerprint consisting of 166
publicly available MACCS structural keys.26 In these calcula-
tions, one active compound at a time was taken as the search
template and the remaining active molecules were added to the
source database as potential hits. Similarity search calculations
were carried out for each active molecule, and database
compounds were ranked according to values of the Tanimoto
coefficient (Tc). In each case, hit and recovery rates were
calculated for the 50 top scoring compounds and the results
were averaged for each activity class. MAD and similarity search
results were also compared to literature data for five of our six
activity classes.

Furthermore, we assessed the degree of structural diversity
within each activity class by systematic pairwise comparison
of all compounds using the MACCS fingerprint. For each class,

dExp) sizeRange
|Baits| - 1

expandedRange) [classMin- dExp, classMax+ dExp]

s ) M
D
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average Tc values were calculated that ranged from 0.62 for
TKE to 0.68 for COX (with minimum observed Tc values of
∼0.4). These findings confirmed that the activity classes studied
here did not consist of analogue series but contained structurally
diverse molecules.

3. Results

3.1. Sensitivity of Descriptors.The MAD approach is based
on the identification of activity class-specific descriptor value
ranges. A key finding has been that descriptors with class-
specific value ranges could be determined for all six compound
sets studied here. In each case, significant differences in
descriptor scores were observed. Table 1 reports some examples
that illustrate how these scores are calculated and provide a good
impression of the spread of obtained scores. Figure 1 shows
the relationship between value distributions and range sizes for
different descriptors to further illustrate the approach. Between
three and 20 high-scoring descriptors (scoreg 5) were identified
for each class. High-scoring descriptors often include, among
others, relatively simple and chemically intuitive formulations
such as logP(o/w), volume descriptors, or donor atom counts
(shown in Table 1 for class H3E). The activity classes produced
different descriptor score distributions. This is illustrated in
Figure 2 showing a comparison of activity classes 5HT and H3E
(scores were calculated and averaged over 100 randomly
selected bait sets). Class 5HT presents an example of a descriptor
score distribution with low sensitivity (Figure 2a). Only a small
subset of the descriptors (∼12%) scores greater than 2.
Nevertheless, an average of three descriptors produced scores
greater than 5. Overall 5HT produced the least favorable
descriptor score distribution of the activity classes studied here.
By contrast, the distribution of H3E reflects a high degree of
descriptor sensitivity (Figure 2b). About 30% of the descriptors
have scores greater than 2, high scores are spread out over the
scoring range, and on average about 20 descriptors achieve
scores greater than 5. Table 2 summarizes the distribution of
scores over intervals and confirms the general trend to identify
high-scoring descriptors that respond to compound class-specific
features. It also shows that the majority of descriptors have little,
if any, sensitivity. In our initial studies, we selected on average
between 54 and 60 (permitted maximum) descriptors for
mapping (Table 2). Mapping sets likely included some descrip-
tors with borderline sensitivity. Including a number of descrip-
tors falling within score interval [1,2) might be expected to
increase the probability of matching database compounds and
increase false-positive rates in virtual screening calculations.
Therefore, the results of our virtual screening trials reported

Figure 1. Relationship between value distributions and range sizes of
descriptor values. In (a), the value distributions of BGDB and activity
class H3E for descriptor radius (smallest vertex eccentricity) are shown,
and in (b), the corresponding distributions for descriptor logP(o/w) (log
of octanol/water partition coefficient). On the horizontal axis,q0.25 and
q0.75mark the positions of the 25%- and 75%-quantile of BGDB. Double
headed arrows indicate which value ranges are used for the descriptor
score calculations. Descriptor radius belongs to category “a”, as defined
in the text, that is, the class value range falls within the central range
of BGDB. By contrast, descriptor logP(o/w) is an example for category
“b” because the class value range falls below the 25%-quantile of
BGDB.

Table 1. Score Calculation Examplesa

descr
class value

range
min

of DB
q0.25

of DB
q0.75

of DB
max

of DB
std dev
of DB category formula

resulting
score

fcharge [0.00, 0.00] -51.00 0.00 0.00 12.00 0.51 a 0.0
density [0.68, 0.90] 0.43 0.73 0.83 2.53 0.09 a (0.83- 0.73)/(0.90- 0.68) 0.5
weight [254.40, 349.26] 35.82 332.49 495.94 994.98 117.15 a 1.7
radius [6.00, 7.00] 0.00 6.00 9.00 21.00 1.84 a (9.00- 6.00)/(7.00- 6.00) 3.0
b•heavy [15.00, 24.00] 0.00 25.00 37.00 100.00 9.39 b 5.6
logP(o/w) [0.51, 2.67] -4.00 2.69 5.17 8.00 1.81 b 2(2.69+ 4.00)/(2.67- 0.51) 6.2
kier1 [13.07, 17.81] 0.00 18.34 27.59 61.56 6.84 b 7.7
vdw•vol [311.26, 401.80] 40.80 418.87 632.44 1288.51 156.10 b 2(418.87- 40.80)/(401.80- 311.26) 8.3
a•don [3.00, 5.00] 0.00 0.00 2.00 12.00 1.09 c 10.0
vsa•pol [11.37, 29.12] 0.00 0.00 0.00 162.80 7.81 c 2(162.80- 0.00)/(29.12- 11.37) 18.3

a Examples are given for the different categories (a, b, c) of descriptor score calculations for activity class H3E. “DB” stands for compound database.For
clarity, only half of the actual calulations are shown. Descriptors are abbreviated according to MOE23 implementations: fcharge, sum of formal atom
charges; density, mass density; weight, molecular weight; radius, smallest vertex eccentricity in graph; b•heavy, number of heavy-heavy bonds; logP(o/w),
log of octanol/water partition coefficient; kier1, first kappa shape index; vdw•vol, van der Waals volume; a•don, number of hydrogen bond donor atoms;
vsa•pol, polar van der Waals surface area.
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below are thought to represent a lower end performance level
of MAD calculations, which is appropriate for proof-of-principle
investigations.

3.2. Quality of Descriptor Score Distributions Determines
Search Performance.We investigated whether the sensitivity
of score distributions was directly responsible for the outcome
of search calculations. Therefore, we compared results of virtual

screening trials for activity classes 5HT, which produced a low-
sensitivity descriptor score distribution (Figure 2a), and H3E,
for which a high-sensitivity distribution was obtained (Figure
2b). A summary of these search calculations is presented in
Figure 3. The results clearly show that for H3E much better hit
and recovery rates were achieved than for 5HT and confirm a
direct relationship between the quality of descriptor score
distributions and database search results. This represents one
of the key aspects of the MAD approach. Despite significant
differences in descriptor sensitivity between these classes, the
results obtained for 5HT were still acceptable. For example,
for a selection set consisting of 50 compounds, hit and recovery
rates of∼7% and 33%, respectively, were produced for 5HT
(Figure 3). This suggests that inclusion of only a few class-
selective descriptors is sufficient for correct recognition of at
least some active compounds and that the availability of more
sensitive descriptors leads to an increase in hit and recovery
rates.

3.3. Expansion of Descriptor Value Ranges for Mapping.
We introduced expanded descriptor value ranges for compound
mapping in order to increase the probability of identifying
structurally diverse active compounds. This approach was tested
by comparing virtual screening trials using exact and expanded
value ranges. Representative results are shown in Figure 4. For
example, for activity class CAE, a notable increase in recovery
rates of about 5-10% was observed over compound selection
sets of varying size and a slight yet consistent increase in hit
rates (Figure 4a). By contrast, under equivalent calculation
conditions, such effects were less obvious for class TKE where
only a minor increase in average recovery rates occurred (Figure
4b). The magnitude of these effects displayed compound class
dependence, but we generally observed an increase in recovery
rates as a consequence of mapping to expanded descriptor value
ranges, while hit rates remained largely unaffected. However,
mapping to expanded value ranges did not lower hit or recovery
rates, indicating that moderate expansion of value ranges did
not increase net false-positive rates. Thus, we used expanded
value ranges for virtual screening calculations.

3.4. Class-Specific Search Performance.Results of sys-
tematic virtual screening trials over all activity classes are

Figure 2. Descriptor score distributions. In (a), the distribution for
activity class 5HT is shown, and in (b), the corresponding distribution
for class H3E. Reported are averages for 100 randomly selected bait
sets of 10 molecules each. The distribution for 5HT represents an
example of a nonfavorable case because only relatively few descriptors
achieve scores greater than 2. Thus, according to our scoring scheme,
not many descriptors measurable respond to 5HT class-specific features.
By contrast, the distribution for H3E represents a favorable case. Here
many descriptors have scores greater than 2 that are spread out over a
wide score range and the top 20 descriptor scores are greater than 5.
Thus, approximately 15% of the descriptors tested here specifically
respond to molecular features of class H3E.

Table 2. Distribution of Descriptor Scores for Different Activity
Classesa

score interval 5HT BEN CAE COX H3E TKE

[5,inf) 2.9 7.9 14.9 8.5 20.2 15.6
[4,5) 0.9 0.9 4.0 1.1 2.4 0.6
[3,4) 2.2 3.1 0.6 4.8 1.6 0.7
[2,3) 8.4 6.3 1.7 25.8 13.5 7.3
[1,2) 46.1 51.4 41.4 39.8 43.7 40.5
[0,1) 63.5 54.5 61.3 44.0 42.5 59.4
AvSelected 54 60 59 60 60 58

a Average numbers of descriptors falling into distinct score intervals are
listed; [5,inf) means scores equal to or greater than 5. “AvSelected” reports
the average number of descriptors that were used for compound mapping.

Figure 3. Representative hit and recovery rates. Shown is a comparison
of hit and recovery rates for activity classes 5HT and H3E and
compound selection sets of varying size. As expected, recovery rates
increase with the size of selection sets whereas hit rates decrease.
Differences in performance between 5HT and H3E are consistent with
the descriptor score distributions shown in Figure 2: H3E has a more
favorable score distribution than 5HT, and, accordingly, MAD calcula-
tions consistently produce higher hit and recovery rates for H3E.
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reported in Table 3. The trials provided a challenging benchmark
scenario for MAD calculations, since only between seven and
12 known active compounds were available as potential hits
within more than 1.3 million BGDB molecules that were
considered potential false positives. For calculation of hit and
recovery rates, compound selection sets were varied in size
between five and 100 compounds. Taking the mid-size set of
50 compounds as a reference point, classes 5HT (as discussed)
and BEN showed lowest hit and recovery rates of∼7% and
30-33%, respectively. For class CAE, a hit rate of 12% was
achieved and a recovery rate of 50%, while COX gave hit and
recovery rates of about 10% and 68%, respectively. Best results
were obtained for H3E and TKE that produced hit rates of 15-
16% and recovery rates of 70% (H3E) and 79% (TKE). A
general trend was the good performance of MAD when small
compound sets were selected. For example, reducing selection
set size from 50 to 30 compounds only slightly reduced recovery
rates but hit rates increased by up to 10%. Table 4 summarizes
an “extreme” case of selecting only 10 database compounds,

which roughly corresponds to the number of potential hits
available in BGDB. On average, between 1.4 and 7 hits were
selected within the top scoring 10 compounds. For four of our
six classes (except 5HT and BEN), recovery rates were not much
affected compared to larger selection sets, but in all cases, hit
rates further improved. In three of six cases, hit rates in part
significantly exceeded the 50% level.

3.5. Comparison with Other Methods.The rather promising
results achieved in these test calculations were compared to those
with other methods to put MAD performance into perspective.
Five of our six activity classes have previously been studied
using Recursive Median Partitioning (RMP)27 and also another
mapping algorithm, Dynamic Mapping of Consensus Positions
(DMC),28 which is discussed in more detail below. The
availability of these studies permitted comparison of MAD with
literature data. In addition, we have carried out for all six
compound sets 2D similarity search calculations using a
structural fragment-type fingerprint (2D-FP), which is a widely
accepted and intuitive similarity search approach.2,6 Table 5
reports the comparison of these different approaches. For MAD
calculations, the smallest number of potential database hits was
available (and the smallest compound sets were selected).
Nevertheless, MAD produced overall best results. For example,
it gave consistently higher recovery rates than 2D-FP and
significantly higher hit rates in four of six cases. Using relatively
small selection sets comparable to those of the other methods,
the limiting factor of 2D-FP search calculations were low
recovery rates. Hit rates of MAD and DMC were comparable,
but MAD produced significantly higher recovery rates for three
classes. Both methods performed better than RMP.

3.6. Screening Bioactive Compounds.As an additional test,
MAD was applied to screen the MDDR database that exclu-
sively contains active compounds. Table 6 summarizes the
results. Consistently high hit rates ranging from about 16% to
79% were also achieved in these calculations. For four of six
classes, close to or more than half of the compounds of the
selection set belong to the same activity class. Hit rates obtained
here cannot be directly compared to those of virtual screening
trials due to the significant differences in calculation conditions
and database composition. For example, MDDR contains many
serotonin receptor ligands and, consequently, we noted a
significant relative increase in hit rate for 5HT. In addition, Table
6 lists a number of compounds from the selection sets that are
structurally similar to baits and have either similar or different
activity annotations. Figure 5 shows some examples for activity
classes BEN and H3E. These compounds represent interesting
molecular similarity relationships that merit further analyses.
Figure 6 shows another molecular similarity relationship
detected with MAD. For 5HT, compounds belonging to two
structural series were identified with either distinct or overlap-
ping dopamine or serotonin antagonist activities.

4. Discussion

4.1. Behavior of the Descriptor Scoring and Selection
Scheme.The determination of descriptors whose value ranges
for compounds with similar activity significantly depart from
those of many database molecules makes it possible to exploit
these descriptor settings as a “signature” of activity. We found
that, on average, about 10% of the descriptors analyzed here
displayed a detectable tendency, albeit at substantially varying
levels, to respond to compound class-specific features. Thus,
combinations of descriptors with some potential for compound
class selectivity were chosen as a basis for compound mapping
and proved to be effective virtual screening tools for the activity

Figure 4. Performance of alternative mapping functions. Results of
MAD calculations are shown for two activity classes, (a) CAE and (b)
TKE, when different descriptor value ranges are used for mapping of
database compounds. For each class, a comparison of hit and recovery
rates is shown for compound selection sets of increasing size and
mapping to either exactRange or expandedRange, as detailed in the
Methodology section. For example, “Rec-expandedRange” reports
recovery rates for mapping of database compounds to expandedRange
and “Hit-exactRange” hit rates for mapping to exactRange. For CAE,
both hit and recovery rates further improve under expandedRange
conditions, whereas no significant differences between exactRange and
expandedRange are seen for TKE.
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classes we analyzed. In fact, the virtual screening results reported
herein were obtained under liberal descriptor selection criteria
and should represent a low-end performance range of MAD
analysis, since false-positive rates could likely even be further
reduced by eliminating some of the descriptors. However, MAD
already has low false-positive rates, as it performs well when
small compound sets are selected. The high hit and recovery

rates achieved here also suggest that it is not required to identify
large numbers of highly activity-selective descriptors for given
compound classes, as long as it is possible to use combinations
of descriptors displaying at least some sensitivity. These
assumptions are well in accord with previous observations that
combinations of simple or binary-transformed descriptors can
be highly discriminatory in database partitioning27 and the
selection of active compounds.28 Regardless of whether soft or
hard descriptor scoring schemes are ultimately applied, our
results show that descriptors with compound class-specific
preferences can be identified and that combinations of such
descriptors have significant predictive ability in compound
mapping and virtual screening. The observation that expansion
of activity-sensitive descriptor value ranges for mapping of
database compounds revealed a general tendency to improve
recovery rates further supports the view that combinations of
activity-sensitive descriptors are highly discriminatory in the
recognition of active compounds.

Table 3. Hit and Recovery Rates for Six Activity Classesa

no. of
compounds

recovered
ADCs

rec
rate, %

hit
rate, %

similarity
score

no. of
compounds

recovered
ADCs

rec
rate, %

hit
rate, %

similarity
score

(a) 5HTb

5 0.8 7.4 16.3 0.999 60 3.8 34.7 6.4 0.980
10 1.4 12.6 13.9 0.995 70 4.0 36.5 5.7 0.979
20 2.2 20.1 11.0 0.993 80 4.2 37.9 5.2 0.977
30 2.8 25.8 9.5 0.988 90 4.3 39.2 4.8 0.976
40 3.3 29.9 8.2 0.985 100 4.5 40.5 4.5 0.974
50 3.6 32.7 7.2 0.981

(b) BENc

5 1.4 11.4 27.3 0.996 60 3.8 31.5 6.3 0.978
10 2.0 16.6 19.9 0.991 70 4.0 33.1 5.7 0.977
20 2.7 22.4 13.5 0.986 80 4.1 34.5 5.2 0.976
30 3.1 25.7 10.3 0.983 90 4.3 35.9 4.8 0.975
40 3.4 28.0 8.4 0.981 100 4.5 37.3 4.5 0.974
50 3.6 29.8 7.2 0.979

(c) CAEd

5 4.0 33.1 79.4 0.973 60 6.1 51.1 10.2 0.937
10 5.1 42.1 50.5 0.957 70 6.2 51.7 8.9 0.935
20 5.5 46.1 27.7 0.948 80 6.3 52.3 7.8 0.934
30 5.8 48.2 19.3 0.943 90 6.3 52.8 7.0 0.932
40 5.9 49.4 14.8 0.941 100 6.4 53.3 6.4 0.932
50 6.0 50.3 12.1 0.939

(d) COXe

5 3.9 55.6 77.8 0.955 60 4.8 69.1 8.1 0.895
10 4.3 61.4 43.0 0.932 70 4.9 69.8 7.0 0.893
20 4.5 63.7 22.3 0.920 80 4.9 70.2 6.1 0.889
30 4.6 65.4 15.3 0.911 90 4.9 70.6 5.5 0.886
40 4.7 66.8 11.7 0.905 100 5.0 71.1 5.0 0.883
50 4.8 68.2 9.6 0.899

(e) H3Ef

5 4.6 41.9 92.1 0.980 60 7.8 71.2 13.1 0.910
10 6.6 60.4 66.4 0.948 70 7.9 71.9 11.3 0.907
20 7.2 65.6 36.1 0.929 80 8.0 72.5 10.0 0.905
30 7.4 67.7 24.8 0.923 90 8.0 72.9 8.9 0.903
40 7.6 69.2 19.0 0.917 100 8.1 73.4 8.1 0.901
50 7.7 70.3 15.5 0.914

(f) TKEg

5 4.8 48.1 96.2 0.964 60 7.9 79.2 13.2 0.861
10 7.0 70.2 70.2 0.902 70 8.0 79.5 11.4 0.858
20 7.6 76.1 38.0 0.881 80 8.0 79.8 10.0 0.855
30 7.8 77.5 25.8 0.874 90 8.0 80.1 8.9 0.852
40 7.8 78.4 19.6 0.867 100 8.0 80.3 8.0 0.851
50 7.9 78.8 15.8 0.865

a “ADC” stands for active database compounds and reports the total number of potential hits for each activity class (“hidden” in BGDB). “No. of compounds”
refers to the size of selection sets. For example, in the case of TKE, 7 hits were identified on average (over 100 trials) when the 10 compounds most similar
to the baits were selected from BGDB. “Rec rate” stands for recovery rate, and “similarity score” reports the similarity cutoff value for each selection set.
b Number of active compounds: 21. Number of baits: 10. Number of ADCs: 11.c Number of active compounds: 22. Number of baits: 10. Number of
ADCs: 12.d Number of active compounds: 22. Number of baits: 10. Number of ADCs: 12.e Number of active compounds: 17. Number of baits: 10.
Number of ADCs: 7.f Number of active compounds: 21. Number of baits: 10. Number of ADCs: 11.g Number of active compounds: 20. Number of
baits: 10. Number of ADCs: 10.

Table 4. MAD Recovery and Hit Rates for the Top 10 Compoundsa

activity
class

no. of
compounds

recovered
ADCs

rec
rate, %

hit
rate, %

5HT 10 1.4 12.6 13.9
BEN 10 2.0 16.6 19.9
CAE 10 5.1 42.1 50.5
COX 10 4.3 61.4 43.0
H3E 10 6.6 60.4 66.4
TKE 10 7.0 70.2 70.2

a Summary of recovery and hit rates when selecting only the 10 top
scoring compounds from BGDB (averages over 100 trials). Abbreviations
are used as reported in footnotea of Table 3.
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4.2. Activity-Related Property Discrepancies.The quantita-
tive treatment of activity-selective descriptor values provides
the basis of MAD and goes beyond our information-theoretic
studies of systematic descriptor and property differences between
compound databases18-20 and also other investigations that have
analyzed such differences in screening data sets.29 Results of
our descriptor value analysis are consistent with previous
observations that different descriptors contribute very differently
to the accurate classification of active compounds24,25 or that
some molecular properties of different activity classes have
statistically different value distributions.30 Thus, our studies
represent an extension of such concepts for direct application
in molecular similarity analysis and virtual screening.

4.3. Compound Scoring.The results of our virtual screening
trials also demonstrate that application of a simple compound
scoring function was sufficient for hit identification in all six
test cases. To further refine score distributions and increase their
resolution, it is possible to apply more complex scoring schemes,
for example, by introducing descriptor score-dependent weight-
ing factors in the calculation of compound scores. However,
such refinements were not crucial for achieving consistently high
hit and recovery rates in our studies.

4.4. Characteristic Features of MAD. As a molecular
similarity and ligand-based virtual screening method, MAD is
designed to recognize both close and distant molecular similarity
relationships. This was taken into account when differentiating
between exactRange and expandedRange for descriptor scoring
and compound mapping. Dependent on the search problem
under investigation, expandedRange can easily be adjusted.
Furthermore, the ability of MAD to detect diverse similarity
relationships was tested by mining a large number of biologically
active compounds from the MDDR. For each class, a spectrum
of structures was identified, including many closely but also
more distantly related ones; in terms of structure and/or activity.

Table 5. Reference Calculationsa

activity
class method ADC

no. of
compounds

rec
rate, %

hit
rate, %

5HT MAD 11 10 13 14
2D-FP 20 50 15 6
DMC 61 155 23 9
RMP 61 75 22 21

BEN MAD 12 10 17 20
2D-FP 21 50 22 9
DMC 49 17 9 26
RMP 49 83 18 12

CAE MAD 12 10 42 51
2D-FP 21 50 22 9
DMC
RMP

COX MAD 7 10 61 43
2D-FP 16 50 15 5
DMC 21 18 18 50
RMP 21 72 11 3

H3E MAD 21 10 60 66
2D-FP 20 50 33 13
DMC 42 24 29 74
RMP 42 61 5 3

TKE MAD 20 10 70 70
2D-FP 19 50 16 6
DMC 25 25 9 26
RMP 25 74 40 13

a All search calculations were carried out in BGDB. RMP and DMC
results were taken from refs 27 and 28. For MAD, RMP, and DMC the
size of the bait set was always 10 compounds. “No. of compounds” reports
the sizes of selection sets. Depending on the method, selection set sizes
vary.

Table 6. Recognition of Bioactive Compoundsa

activity
class

no.
of

baits

no. of
selected

com-
pounds

no.
of

hits

hit
rate,
%

structurally related compounds
with diverse activities

5HT 21 74 32 43.2 11 [7 DDA, 4 ATP]
BEN 22 77 12 15.6 15 [9 P4I, 2 5HT, 2 RTI, 2 COX]
CAE 22 139 51 36.7 14 [8 COX, 6 ESI]
COX 17 90 71 78.9 2 [2 ENA]
H3E 21 100 24 24.0 17 [9 5HT, 3 DAU, 3 MEL, 2 PAF]
TKE 20 72 40 55.6 5 [3 PKC, 2 DRI]

a The table summarizes MAD screening of the MDDR database. Hits
are MDDR compounds having the same activity as the baits. Also reported
for each class are numbers of selected compounds with structural similarity
to bait molecules and related or different activities. On the basis of the
observed similarity score distributions and score differences among
compounds in the top 100 list, fewer than 100 compounds were selected
for four classes. In the case of CAE, more than 100 MDDR molecules
were selected because compounds at positions 100-139 had the same score.
MDDR activity class abbreviations: 5HT, serotonin receptor ligands; ATP,
H+/K+-ATPase inhibitors; COX, cyclooxygenase inhibitors; DAU, dopam-
ine autoreceptor agonists; DDA, dopamine (D1, D2, D4) antagonists; DRI,
dihydrofolate reductase inhibitors; ENA, endothelin antagonists; ESI, estrone
sulfatase inhibitors; MEL, melatonin agonists; P4I, phosphodiesterase IV
inhibitors; PAF, platelet-activating factor receptor antagonists; PKC, protein
kinase C inhibitors; RTI, reverse transcriptase inhibitors.

Figure 5. Bioactive compounds detected with MAD. The figure shows
a spectrum of bioactive molecules identified in a virtual screen of the
MDDR for (a) BEN and (b) H3E (see also Table 6). Two representative
bait compounds are shown in the center (circled), and some example
compounds from the selection sets are arranged around them and
numbered in counterclockwise direction. For BEN, molecules occurring
within the top 77 compound selection set include (1) benzodiazepines
(same class), (2) phosphodiesterase IV inhibitors (one of which shares
the benzodiazepine scaffold), (3) an inhibitor of cyclo-oxygenase and
lipo-oxygenase, (4) reverse transcriptase inhibitor, and (5) serotonin
receptor antagonists. For H3E, molecules within the 100 top scoring
compounds include, for example, (1) histamine H3 antagonists (same
class), (2) 5-HT3 antagonist, (3) PAF antagonists, and (4) dopamine
receptor agonist.
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These findings also very well illustrate some of the fundamental
ideas and challenges of molecular similarity analysis.4,6

MAD operates in chemical reference spaces constituted by
descriptors with continuous value ranges and not in spaces that
utilize binary descriptor formulations.10,27 The ability to easily
adjust continuous descriptor value ranges for mapping makes
MAD in principle less sensitive to boundary effects than, for
example, cell-based partitioning algorithms.8,11 As a mapping
technique, MAD is computationally very efficient and readily
applicable to the analysis of very large compound databases.
The only time-limiting factor is the calculation of descriptor
values for source compounds, which needs to be done only once,
given a descriptor pool and compound database.

4.5. Related Methods.As a mapping algorithm, MAD is
conceptually more similar to cell-based partitioning approaches
than decision tree methods or clustering techniques.6 Decision
tree methods rely on the generation of sequential and predomi-
nantly binary descriptor pathways and on compound learning
sets, while clustering approaches, despite algorithmic diversity,
ultimately depend on pairwise compound distance or similarity
comparisons.8 The conceptual resemblance of mapping and cell-
based partitioning is limited to the fact that both approaches
utilize independent descriptor “coordinates” to position com-
pounds in reference spaces. Among cell-based partitioning
techniques, the “receptor-relevant subspace concept”16 is some-
what related to the basic idea behind MAD. The former
approach attempts to identify descriptor axes in BCUT spaces15

around which compounds with a specific activity concentrate.16

However, apart from this analogy, from an algorithmic point
of view, cell-based partitioning and MAD are completely
distinct. Moreover, cell-based partitioning aims at generating
low-dimensional and orthogonal descriptor spaces, whereas
MAD lacks this requirement and, in fact, operates in high-
dimensional spaces.

The approach perhaps most similar to MAD is DMC that
was previously developed in our laboratory.28 DMC is also a
mapping technique but relies on finding consensus positions
for sets of active compounds in binary descriptor spaces of
stepwise increasing dimensionality.28 Binary transformation of
molecular property descriptors for DMC is achieved based on
calculation of statistical medians for descriptor distributions in
compound source databases, underlying the median partitioning
approach.21 Thus, in addition to differences in the way
compounds are mapped, DMC does not utilize activity-
dependent descriptor value ranges, which is a key feature of
MAD. In addition, DMC is much more restricted than MAD in
selecting compound sets of a predefined size. This is due to
the fact that in DMC the number of compounds mapping to
consensus positions of baits is critically determined by dimen-
sion extension levels and is often greatly reduced when
proceeding to the next level.28 Similarity selection in DMC is
ultimately a binary (yes/no) decision. By contrast, MAD uses a
continuous similarity score and creates compound rankings that
easily allow for selection of variably sized sets.

4.6. MAD Performance.Without exception, MAD calcula-
tions produced meaningful results in the virtual screening trials
that were carried out to benchmark the approach. These
calculations provided a rather challenging test situation due to
the presence of only a few potential hits in a large background
database. Although we need to consider the generally strong
compound class dependence of the performance of many virtual
screening methods,17 which makes comparisons often difficult,
hit and recovery rates obtained with MAD are similar to or better
than those reported for application of other ligand-based
methods,6,17 including DMC.28 This was confirmed by direct
comparison of MAD with 2D similarity search calculations for
all six activity classes studied here and RMP and DMC results
for five of these classes.

4.7. Implications for Chemical Space Design.The design
of descriptor spaces for compound classification, diversity and
similarity analysis, or virtual screening continues to be a major
topic in chemoinformatics research.2,31 Universally applicable
chemical space representations that are suitable for many
different applications are yet to be developed, if they exist at
all.2 Accordingly, much emphasis is put on the development of
application-dependent reference spaces. This means one typi-
cally attempts to identify the “best” descriptors for each
application. While it is generally thought that low-dimensional
space representations are preferred for many applications2

including partitioning15 or diversity design,31 mapping algo-
rithms such as DMC or MAD depart from this theme because
they operate in high-dimensional descriptor spaces. This is not
a unique feature. For example, support vector machines, a
machine learning approach, project compound data sets into
high-dimensional space representations through the use of kernel
functions to facilitate compound classification.32,33By contrast,
MAD descriptor spaces are conceptually simple. They are high-
dimensional but composed of “short” descriptor axes (small
value ranges) that are specifically derived for an activity class.
The results of our analysis suggest that it is readily possible to
generate such activity-oriented descriptor reference spaces for
molecular similarity analysis without application of machine
learning techniques for descriptor selection.

4.8. Conclusions.We have reported the development and
evaluation of a new method that is based on the identification
of multiple activity-dependent descriptor value ranges and
mapping of test compounds to these ranges. Systematic analysis
is facilitated by introduction of specifically designed descriptor

Figure 6. Compounds belonging to two distinct structural series (left
and right of the vertical dashed line) with overlapping biological
activities were recognized in MAD calculations using a set of 21
serotonin receptor ligands (5HT) as template molecules: (1) dopamine
receptor antagonists only, (2) both 5HT and dopamine antagonists, (3)
5HT only. For each activity type, two compounds are shown, each
representing one of the two structural series.
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scoring and molecular similarity functions. As a mapping
algorithm that utilizes property descriptor value ranges, MAD
adds to the spectrum of previously developed molecular
similarity and virtual screening methods. Further improvements
of the MAD approach are conceivable by modifying descriptor
and similarity scoring functions. In its current implementation,
MAD produces promising results on the test cases studied here,
under challenging virtual screening conditions. It is worth noting
that only relatively few (∼10) active compounds were used for
descriptor scoring and virtual screening. In our calculations, the
MAD approach displayed the tendency to produce generally
high compound recovery rates. For selection sets of small size
(e.g., 50 or fewer compounds), MAD calculations produced
increasingly high hit rates while largely retaining recovery rates,
indicating high sensitivity of the approach. We have observed
the same tendency in MAD calculations on diverse compound
sets beyond the classes reported here. Taken together, our initial
findings suggest that MAD and related compound mapping
techniques should merit further investigations and large-scale
evaluations.
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